Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The large variety of inflorescence architectures evolved in grasses depends on shape, longevity and determinacy of meristems directing growth of the main and lateral axes. The CLAVATA pathway is known to regulate meristem size and inflorescence architecture in grasses. However, how individual meristem activities are determined and integrated to generate specific inflorescences is not yet understood. We found that activity of distinct meristems in the barley inflorescence is controlled by a signalling pathway comprising the receptor-like kinaseHordeum vulgareCLAVATA1 (HvCLV1) and the secreted CLAVATA3/EMBRYO-SURROUNDING REGION RELATED (CLE)-family peptide FON2-LIKE CLE PROTEIN1 (HvFCP1). HvFCP1 and HvCLV1 interact to promote spikelet formation, but restrict inflorescence meristem and rachilla proliferation.Hvfcp1orHvclv1mutants generate additional rows of spikelets and supernumerary florets from extended rachilla activity.HvFCP1/HvCLV1signalling coordinates meristem activity through regulation of trehalose-6-phosphate levels. Our discoveries outline a path to engineer inflorescence architecture via specific regulation of distinct meristem activities.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abiotic stresses such as drought, heat, cold, salinity and flooding significantly impact plant growth, development and productivity. As the planet has warmed, these abiotic stresses have increased in frequency and intensity, affecting the global food supply and making it imperative to develop stress-resilient crops. In the past 20 years, the development of omics technologies has contributed to the growth of datasets for plants grown under a wide range of abiotic environments. Integration of these rapidly growing data using machine-learning (ML) approaches can complement existing breeding efforts by providing insights into the mechanisms underlying plant responses to stressful conditions, which can be used to guide the design of resilient crops. In this review, we introduce ML approaches and provide examples of how researchers use these approaches to predict molecular activities, gene functions and genotype responses under stressful conditions. Finally, we consider the potential and challenges of using such approaches to enable the design of crops that are better suited to a changing environment. This article is part of the theme issue ‘Crops under stress: can we mitigate the impacts of climate change on agriculture and launch the ‘Resilience Revolution’?’.more » « lessFree, publicly-accessible full text available May 29, 2026
-
Switchgrass low-land ecotypes have significantly higher biomass but lower cold tolerance compared to up-land ecotypes. Understanding the molecular mechanisms underlying cold response, including the ones at transcriptional level, can contribute to improving tolerance of high-yield switchgrass under chilling and freezing environmental conditions. Here, by analyzing an existing switchgrass transcriptome dataset, the temporal cis- regulatory basis of switchgrass transcriptional response to cold is dissected computationally. We found that the number of cold-responsive genes and enriched Gene Ontology terms increased as duration of cold treatment increased from 30 min to 24 hours, suggesting an amplified response/cascading effect in cold-responsive gene expression. To identify genomic sequences likely important for regulating cold response, machine learning models predictive of cold response were established using k -mer sequences enriched in the genic and flanking regions of cold-responsive genes but not non-responsive genes. These k -mers, referred to as putative cis -regulatory elements (pCREs) are likely regulatory sequences of cold response in switchgrass. There are in total 655 pCREs where 54 are important in all cold treatment time points. Consistent with this, eight of 35 known cold-responsive CREs were similar to top-ranked pCREs in the models and only these eight were important for predicting temporal cold response. More importantly, most of the top-ranked pCREs were novel sequences in cold regulation. Our findings suggest additional sequence elements important for cold-responsive regulation previously not known that warrant further studies.more » « less
-
Abstract Natural language processing (NLP) techniques can enhance our ability to interpret plant science literature. Many state-of-the-art algorithms for NLP tasks require high-quality labelled data in the target domain, in which entities like genes and proteins, as well as the relationships between entities, are labelled according to a set of annotation guidelines. While there exist such datasets for other domains, these resources need development in the plant sciences. Here, we present the Plant ScIenCe KnowLedgE Graph (PICKLE) corpus, a collection of 250 plant science abstracts annotated with entities and relations, along with its annotation guidelines. The annotation guidelines were refined by iterative rounds of overlapping annotations, in which inter-annotator agreement was leveraged to improve the guidelines. To demonstrate PICKLE’s utility, we evaluated the performance of pretrained models from other domains and trained a new, PICKLE-based model for entity and relation extraction (RE). The PICKLE-trained models exhibit the second-highest in-domain entity performance of all models evaluated, as well as a RE performance that is on par with other models. Additionally, we found that computer science-domain models outperformed models trained on a biomedical corpus (GENIA) in entity extraction, which was unexpected given the intuition that biomedical literature is more similar to PICKLE than computer science. Upon further exploration, we established that the inclusion of new types on which the models were not trained substantially impacts performance. The PICKLE corpus is, therefore, an important contribution to training resources for entity and RE in the plant sciences.more » « less
-
Sillanpää, Mikko (Ed.)Abstract Predicting phenotypes from a combination of genetic and environmental factors is a grand challenge of modern biology. Slight improvements in this area have the potential to save lives, improve food and fuel security, permit better care of the planet, and create other positive outcomes. In 2022 and 2023 the first open-to-the-public Genomes to Fields (G2F) initiative Genotype by Environment (GxE) prediction competition was held using a large dataset including genomic variation, phenotype and weather measurements and field management notes, gathered by the project over nine years. The competition attracted registrants from around the world with representation from academic, government, industry, and non-profit institutions as well as unaffiliated. These participants came from diverse disciplines include plant science, animal science, breeding, statistics, computational biology and others. Some participants had no formal genetics or plant-related training, and some were just beginning their graduate education. The teams applied varied methods and strategies, providing a wealth of modeling knowledge based on a common dataset. The winner’s strategy involved two models combining machine learning and traditional breeding tools: one model emphasized environment using features extracted by Random Forest, Ridge Regression and Least-squares, and one focused on genetics. Other high-performing teams’ methods included quantitative genetics, machine learning/deep learning, mechanistic models, and model ensembles. The dataset factors used, such as genetics; weather; and management data, were also diverse, demonstrating that no single model or strategy is far superior to all others within the context of this competition.more » « lessFree, publicly-accessible full text available November 22, 2025
-
PremiseLeaf morphology is dynamic, continuously deforming during leaf expansion and among leaves within a shoot. Here, we measured the leaf morphology of more than 200 grapevines (Vitisspp.) over four years and modeled changes in leaf shape along the shoot to determine whether a composite leaf shape comprising all the leaves from a single shoot can better capture the variation and predict species identity compared with individual leaves. MethodsUsing homologous universal landmarks found in grapevine leaves, we modeled various morphological features as polynomial functions of leaf nodes. The resulting functions were used to reconstruct modeled leaf shapes across the shoots, generating composite leaves that comprehensively capture the spectrum of leaf morphologies present. ResultsWe found that composite leaves are better predictors of species identity than individual leaves from the same plant. We were able to use composite leaves to predict the species identity of previously unassigned grapevines, which were verified with genotyping. DiscussionObservations of individual leaf shape fail to capture the true diversity between species. Composite leaf shape—an assemblage of modeled leaf snapshots across the shoot—is a better representation of the dynamic and essential shapes of leaves, in addition to serving as a better predictor of species identity than individual leaves.more » « less
An official website of the United States government
